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Propagation of nucleons in laser fields 
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Received 30 July 1974 

Abstract. The propagator of a spin $ Dirac particle with an anomalous magnetic moment in 
an external plane wave field is calculated by means of an off-shell eigenfunction expansion. 
The intensity-dependent frequency shift in Compton scattering is derived, and the modi- 
fications due to the anomalous magnetic moment are found to be non-negligible. Except 
in the case ofa linearly polarized laser beam, there is moreover an intensity-dependent zeroth 
order harmonic of very low frequency, which IS specific for the anomalous magnetic moment. 

1. Introduction 

This paper continues an earlier one where the Dirac equation in a laser field, represented 
by an external plane wave field, had been solved for a particle with an anomalous 
magnetic moment (Becker and Mitter 1974a to be referred to as I). The particle stands 
for a nucleon as far as the latter can be characterized by its static properties alone. The 
solutions obtained there differ from the Volkov solutions only by the appearance of an 
additional matrix factor which specifies the interaction of the magnetic moment with 
the laser field, Knowledge of the wavefunctions is sufficient to calculate processes where 
nucleons participate only as real particles, eg Compton scattering and pair creation. 
In all other cases, however, the propagator is needed as a starting point. These include 
Compton scattering with two non-laser photons and all processes involving radiative 
corrections. 

To compute the propagator we use an off-shell eigenfunction expansion which has 
been applied so far only in connection with the Volkov propagator. The method is 
easily generalized to the present case (0 2). It  may be advantageous even in other external 
field problems. In '$3 we investigate the structure of the propagator as far as it is specified 
by general requirements. Explicit calculation follows in Q§ 4 and 5. In 8 6 we discuss the 
propagator in momentum space, the poles of which give the modified propagation law 
for a nucleon in the laser field. If this is known the intensity-dependent frequency shift 
which occurs in Compton scattering is readily obtained (0 6). 

2. An off-shell eigenfunction expansion for external field propagators 

The method to be described in this section is essentially due to Ritus (1972) (see also 
Beers and Nickle 1972). It will be generalized here to allow for an anomalous magnetic 

160 



Propagation of nucleons in laser fields 161 

moment term in the Dirac equation. Let us suppose the solutions $ ( x )  of the Dirac 
equation 

(W)- K ) $ ( X )  = 0 (2.1) 

(we use the notation of I), can be numbered in the same way as the free solutions and 
written in the form of a matrix applied to a free spinor 

I(/,(X) = E P W P ,  (a - K ) $ ,  = 0. (2.4) 

The matrix E, (x )  is assumed to depend on p only via scalar products with other vectors?. 
In order that (2.4) solves the Dirac equation (2.1) we must have 

(D(X) - K)Ep(X) = H p ( X ) @  - K )  (2 .5)  

with another matrix H , ( x )  which is so far unspecified but subject to the same restriction 
as E,(x) .  Multiplying (2 .5)  from the left with the adjoint solution $,E,(x) where 

E,(x)  = yOEi(x)yO 

and integrating we find that orthogonality is expressed by 

Due to the above mentioned restrictions on the dependence of the matrices on p, (2.6) 
and (2 .5)  hold for arbitrary p and q even off-shell. Completeness then yields 

(2 .7)  

E,(x)  is assumed to include the exponential exp( - ipx) so that 

D(x)E , (x )  = gE, (x )  + R. 

We now split E,(x)  into two parts 

E,(x) = Eb”(x) + E f ’ ( x )  

depending on an even or odd number of y matrices, respectively. Moving p to the 
right we find 

(D(x)-rc)E,(x)  = ( E c ’ ( x ) - E f ’ ( x ) ) ( p l - K )  

- 2KEf’(x)+ R + [kr, E ~ ’ ( x ) ]  + (a, EF’(X)) .  

As the last four terms do not depend ong, (2.5) is satisfied if and only if their sum vanishes 
and 

t To be more precise, this means the following: we choose a basis of Dirac matrices which does not explicitly 
contain y 5 ,  eg products of p ,  k, 2, (cf (3.5)). If p occurs it is moved to the right and replaced by K. 
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So within (2.6) and (2.7) E ,  and H ,  may be interchanged and the Green function of (2.1) 
can be written as 

which already contains the appropriate boundary condition (in this case that of time 
ordering). 

The usefulness of (2.9) depends, of course, upon whether or not the integral can be 
evaluated. This is simple (apart from the algebra which is tedious) in the Volkov case 
of an external plane wave field which shall be considered below. The method is not 
restricted to Dirac equations which have solutions of nearly plane wave appearance as 
in the Volkov case. It applies equally well, eg for a constant magnetic field where one 
of the components of p has discrete values. In that case the corresponding integration 
has to be replaced by a summation. 

To conclude we remark that exponentiating the denominator in (2.9) gives the propa- 
gator in a form which corresponds to that obtained by the proper time method 
(Schwinger 1951). 

3. General properties of wavefunctions and propagators 

From now on we specialize to the case of an external plane wave field 

so that 

The wavefunctions of this problem have been computed in ( I ,  equation (21)). For the 
arbitrary constant spinor I )~ introduced there, we may take the free field spinor $, in 
order to rewrite the solution in the form (2.4). The result is 

where 

(3.4) 

(3.5) 
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The functions b,(<) and ci(<) depend on Fi(5) and are determined by a system of differential 
equations (I, equation (22); since we consider here 5 instead of U as argument, 1;. has to 
be replaced by Fi in these equations). Explicit solutions are available for the special 
cases of linear polarization and of a monochromatic plane wave with circular polariza- 
tion (I (36) and I(39)). The orthogonality and completeness relations (2.6) and (2.7) are 
fulfilled if 

(3.6) 

in contrast to I, where we had considered a three-dimensional normalization yielding 

Before calculating the propagator we add some general remarks. Since the constant 
spinor Go in the original solution is completely arbitrary we can replace it by ~ ~ \ c / ~  
(i = 1,2). This is equivalent to the following interchanges of the functions bi and ci : 

K = b!+cf = 1 

K = (24-3.  

*o -+ e 1 * 0 :  

*o -+ @2*0 

c 2 - +  -b2 
(3.7) 

b, -+ - C ,  b2 -+ c2 C l  -+ bl 

b l  -+ - c 2  b2 -+ - c 1  c1 -+ b2 c 2  -+ b , .  

The propagator, of course, must not be influenced by the interchanges (3.7), so it is 
allowed to depend on bi and ci only via the invariant bilinear combinations 

S ,  = bib; +cicI 

S,i = clbI-c;bi+tij(C,b;-c;bj) (3.81 
S3 = c ~ c ’ ,  - clc; + Eijbibi 

where bi = bi(<), bi = bi(t’) etc. As a consequence of (3.6) the functions S are normalized 
according to 

s:+Sii+s: = 1. (3.9) 
In the case of linear polarization in the x1 direction we obtain from I (36) 

s, = Kcos(q-q’) S , ,  = -Ksin(q-q’) s,, = s3 = 0 
(3.10) t 

‘I = g J<, F(5’) d t ’  = g(A l(5) - Al(t0)) 

and in the case of a monochromatic plane wave with circular polarization we have from 
I(39) 

(3.1 1) 
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The functions S I ,  S,i, S, are, as it must be, independent of the constants of integration 
present in I (36) and I (39) apart from the common factor K which is determined by 
(3.6). 

The structure of the propagator is further restricted by charge conjugation invariance 
which requires 

(3.12) 

with C the usual charge conjugation matrix, which satisfies CyEC-’ = - y,,. From I(26) 
and I (27) we infer that ci can be chosen as even and bi as odd upon changing the sign of g. 
From that we conclude that the functions S, and S2i  are symmetric and S ,  is antisym- 
metric under the combined interchange x H x’ and g -, -g. A further symmetry which 
reflects the reality of A,(t) reads 

(3.13) 

where E is the Dirac matrix connected with time reversal and satisfyingBy,*B- ’ = yoy,yo. 
K + - t i  is understood to include g -+ -g  via (3.3) so that all the functions S are sym- 
metric with respect to A + - A  and K -+ - t i .  

At least in the case of the neutron, where the only non-trivial dependence on 5 and 5’ 
is given by the functions S, the propagator is determined by (3.12) and (3.13) to a large 
extent. 

G(x, x’IA) = CG(X‘, XI - A)TC- ’ 

G(x, x’ /A,  K )  = - yoEG(x, x’I - A, - K ) * ( Y @ ) - ’  

4. The neutron propagator 

In order to split the calculation of the complete propagator into manageable pieces we 
compute at first the propagator of a neutral particle with an anomalous magnetic 
moment. Exponentiating the denominator in (2.9) we have 

The differentiation with respect to z refers only to the explicit dependence on this 
variable. In the absence of the non-trivial part of the exponential in (3.4) the integration 
with respect to p is straightforward if performed in terms of the light-like components 
p, , ,p , .  and pi (cf I (8)). The result is 

2i is now given by 
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which has been indicated by writing Ba. The differentiations refer again to the explicit 
dependence on z throughout the whole integrand. The propagator becomes 

G,(x,x’) = -__ 1 JOm $ exp[ - i(  s K 2  + g)] 
16nZ 

23. 2i 
2s 

X [ ( K + i )  (st - 2 1 2 2 S 3 ) - 2 S 2 i - - - y 5 k Y 3  kz 
(4.3) 

1 42. 
kz 

+ - ( 2 S K 2  - i)szi - iKkzcijy52jSzi 

where now 

An explicit form may be obtained by means of the integral representations 

-'Jam 16nz :exp[ - i (  s K 2 + ; ) ]  

-&Jom $exp[ - i (  s K 2 + ; ) ]  

H ‘ ~ ) ( ( K ~ z ~  - ic)”2) 
( ~ ~ z ~ - i c ) l / ~  

H b 2 ) ( ( ~ 2 ~ 2  - ic)lI2) - iK4 

4 n ( ~ ~ z ’  - ic)l12 
- - (4.5) 

For subsequent calculations it is, however, often more convenient to start from the 
integral form (4.3). 

5. The complete propagator 

By means of (2.9) the complete propagator is calculated by transforming the free one 
with the complete wavefunctions. In a quite similar way it can be computed by trans- 
forming the neutron propagator with the pure Volkov wavefunctions. The first version 
of (3.4) can be rewritten in the following form : 

E , b )  = V,(x)N,(x) (5.1) 

where VJx)  e-iP”+p is the Volkov wavefunction and N,(x)+,  the neutron wavefunction. 
The neutron propagator of (4.3) can be unambiguously written as 

G J x ,  x’) = GN(& 5 ’ 3  z )  z = x-x‘  

where z stands for the explicitly appearing difference x - x’ as exhibited in (4.3). If we 
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now insert (5.1) into (2.9) we obtain 

(5.4) 

The evaluation of (5.4) is straightforward, although rather tedious, and no means are 
required in addition to those used for the calculation of the neutron propagator. We 
only give the final result 

G(x, x') = --$(x,x') -exp -1s m +- 
167~' JOY [ ' ( ::)I 

+2kz (L iL j -  MiMj)S2 ,  . (5 .5 )  11 
The ingredients of ( 5 . 5 )  are those of the Volkov propagator (Brown and Kibble 1964) 
which is recovered by setting S ,  = 1,S2, = S ,  = 0. In particular 4 denotes the usual 
gauge-dependent line integral and m2 the positive field dependent mass squared. 
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(The notation used here is that of Becker and Mitter (1974b), where one finds an extensive 
discussion of these functions, especially in the case of circular polarization.) The integral 
over s in (5.5) can be performed as above according to (4.5). 

6. Propagation of nuclem and intemity-dependent frequency shift in Compton 
scattering 

The propagator which we have arrived at in the last section has a structure very similar 
to the Volkov propagator. In fact, the various terms of the latter or similar ones have 
merely been multiplied by one of the functions S.  The impact of this modification is 
most easily seen from the Fourier transform 

In the following we treat the case of circular polarization which is particularly simple 
because 

depends only on the coordinate difference. By the way we remark that the propagator 
(5.5) simplifies a bit in that case, since Lis2, = MieijSzj = 0 and MJ, ,  as well as 
Lie i jSz j  depend only on the coordinate difference. 

We shall write down the Fourier transforms of two typical terms, namely 

1 
{Gl(x, x‘), G2(x, x’)) = - y $ ( x ,  167t x’) J $ exp[ -is( m2 +$)I { S ,  , S ,  1) 

which are 

and 

where 
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is the well known effective mass and r and i are given by 

If g = 0, (6.3) reduces to the Volkov result 

(cf Reisz and Eberly 1966, Becker and Mitter 1974b). Thus the main effect of the anom- 
alous magnetic moment is to replace the Volkov quasi-energy levels 

These are the only poles which occur in the momentum transform of (5.5). One can 
easily convince oneself that all of the terms of (5.5) have transforms similar to (6.3) and 
(6.4), even if they include the Mi, N etc which are simple trigonometric functions. 
Because 

p 2  = $[1-(1+4g2)”2] = - 8 2  

the modification to (6.8) is very small. 
In the case of the neutron the parameter i vanishes. Therefore only one term con- 

tributes to the double sums in (6.3) and (6.4). cl(p,p’) becomes diagonal, 1 = 0 and 
n = _+ 1 or 0. This had to be expected because the line integral +(x, x’) accounts for all 
non-diagonal terms except 1 = +1, and +(x,x’) = 1 for the neutron. So G,(x,x’) 
depends only on the coordinate difference. G 2 ( p , p ‘ )  has only off-diagonal terms with 
1 = f 1, n = 0, f 1. All terms of the neutron propagator (4.3) have similar properties. 

Once the quasi-energy levels (6.9)are known it is not difficult to calculate theintensity- 
dependent frequency shift, which occurs in Compton scattering off a particle with an 
anomalous magnetic moment. In this connection Compton scattering is understood to 
mean the net absorption of one or more quanta from the laser beam together with the 
emission of one photon with arbitrary momentum k‘. The process could equally well 
be referred to as bremsstrahlung in the external field. 

We proceed in a similar way as Brown and Kibble (1964). Momentum conservation 
reads 

p + r k  = p ‘ + k ’  (6.10) 

where p and p ’  are the initial and final momenta, respectively, of the proton (or neutron), 
k’ is the momentum of the emitted photon and r is the net number of absorbed laser 
quanta. Of course, if p 2  = p” = K’, the usual Compton formula results. To obtain an 
intensity-dependent frequency shift one has to take into account the modified propa- 
gation law (6.9). We then have to relate the proton momenta inside the laser beam to 
those outside : 

(6.1 1) 
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where now q 2  = q’2 = K~ and the laboratory frame is defined by qo = K, q = 0. The 
sign of p2  may be different in the expressions for p and p’ .  Obviously, the ansatz (6.1 1) 
satisfies (6.9). It is reasonable to  assume that the difference between inside and outside 
momenta is proportional to k ,  since this is the only direction where translational in- 
variance is violated. From (6.10) and (6.11) we obtain the frequency of the emitted 
photon in the laboratory frame 

(6.12) 

where 9 is the scattering angle of the emitted photon, so that kk‘ = 2 sin2($/2), and 

F = r + l - l ’  p = + p 2  or 0. 

(6.12) is valid for protons as well as neutrons. In the latter case, however, F is restricted 
to  the values F = 0, 1,2. 

7. Conclusions 

The calculation of the frequency shift could have been done equally well by means of 
the wavefunctions without making any use of the propagator. We have seen, however, 
that it is immediately obtained from the poles of the propagator in momentum space. 

We turn now to discuss the frequency shift (6.12). It differs from the result of Brown 
and Kibble by the replacement of F by F+2p. Hence, one effect of the anomalous 
magnetic moment is to split the energy levels of the scattered photon into triplets. The 
relative level spacing is approximately Ao/w = 2p,. The usual parameter characterizing 
the intensity of the laser is v = ca/(mec2)  with me the mass of the electron. At present 
this value is at best v 5 1, so we have 1p21 5 due to the electron nucleon mass 
ratio. This is of the same order of magnitude as the second term in the denominator of 
(6.12), so the modification of the intensity-dependent frequency shift by the anomalous 
magnetic moment is quite considerable. For a high intensity (v 5 1) laser with say 
A - 10-6m we have O / K  - Hence the third term in the denominator of (6.12) 
which gives the usual Compton scattering frequency shift can be completely neglected. 

The frequency shift (6.12) exhibits one distinguishing feature : 0‘ does not vanish if 
? = 0. So in addition to  the Fth order harmonics (F = 1,2,. . . )  discussed so far, there is 
a very low frequency (in the radio range under the same conditions as above) which is 
entirely due to the presence of the anomalous magnetic moment. Very crude estimates 
based on phase space considerations analogous to Brown and Kibble indicate that the 
cross section for scattering into this level is of the same order of magnitude as first 
harmonic scattering. There might be, however, various cancellations with the tendency 
to reduce the cross section, and more detailed calculations should be carried out before 
quantitative statements can be reached. 

So far we have investigated only circular polarization and found all effects to be at 
best of order g 2 .  Since in the case of linear polarization the parameter g enters (3.10) 
linearly, one might expect a larger effect on the frequency shift. There is, however, no 
effect at all. The reason is that the poles of the propagator are now given by (6.8) (with 
IC: = K’ +ic2a2)  as in the case without anomalous magnetic moment. This is not hard 
to understand : the level splitting is due to different orientations of the magnetic moment. 
If the magnetic field alternates in a definite direction all orientations are equivalent. 
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In so far as the electron’s anomalous magnetic moment can be taken into account by 
merely adding the oF term in the Dirac equation the formulae given above apply to the 
electron as well. The parameter g2 is of the same order of magnitude in both cases. For 
the electron, however, ( K : - K ’ ) / K ~  = v 2  5 1. 

We remark finally that it may be a very difficult question to what extent the intensity- 
dependent frequency shift can be observed in actual experiments. More realistic but 
still very idealized wave packet calculations (Dawson and Fried 1970, Neville and 
Rohrlich 1971) indicate that no definite shifted frequency can be expected but rather a 
considerably broadened and complicated lineshape. 
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